Carbon in Comets: the Volatiles
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Comets play important roles in both storage and delivery
of primordial material.
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Physical and chemical processes in protostellar
disks determine molecular abundances in comets
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Comets formed in disk and then scattered

Pluto’s orbit Orbit of binary

Comets formed from e ———KLlper Det object
material leftover from
planet formation and
may contain preserved
interstellar grains.

Kuipér Belt and outer
solar system planetary orbits

The Oort cloud
(comprising many
billions of comets)

Levison1996,Walsh, K. et al.
2011, Dones et al. 2015




Orbital characteristics and chemical abundances
are both important for testing formation models.

Short-period (P<200 yr)
Jupiter Family Comets
Halley-Type

CHIRON
TYPE

. Levison 1996
Figure 7. Proposed family tree for comets.



H,0
co
Co,

CH,
C,H,
C,H,

CH;0H
H,CO
HCOOH
HCOOCH,
CH,CHO
(CH,OH),
C,H;OH
CH,OHCHO
NH,CHO

NH;
HCN
HNCO

HNC
CH,CN

HC,N

H,S
ocs
SO
SO,
cs
H,CS
NS
S,

5

L |‘||

sl

=10
=10

=10
=10
>10

=10
>10

R=]

E I~ S I (N ]

>10
=10

=10
>10

>10

=10

s Vv
0 W D e 00 N

e m TR ST
02 10! 1 10
abundance in comets relative to water (%)

3

Top carbon-bearing
molecules in comets

Graph from Bockelee-Morvan and Biver 2017, See also
DiSanti talk, Dello Russo et al. 2016.

Cco, Cco,, CH,, CH;0H, C,H,, C,H,,
and H,CO are among the most
abundant.



Cometary abundance ratios are not absolute: they
can, and often do, change as a comet approaches
and recedes from the Sun.

Image credit: James Schombert, U. Oregon

It is important to collect
data for many values of
heliocentric distance in
order to correctly model
the nucleus composition.

Also, some molecules are
““daughter products,”’
formed via reactions of
“parent molecules”
with photons, and/or
collisions with other
particles.
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(c) DLR CC-BY 3.0

Sublimation =——> Photodissoziation Photoionisation ——>
Photodissociation




Mm-spectra useful to determining how
molecules emitted (and how much)
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Figure 2: Model/data comparison. CO J=2-1 spectra of 29P at two different resolutions (top obtained
with IRAM 30-m telescope from Crovisier et al. 1995; bottom obtained with ARO SMT 10-m dish
from Wierzchos and Womack, in prep.). This model is based on the surface distribution of gas flux
and temperature given by the thermophysical models of Davidsson € Gutierrez and is convolved with
other data the group has for 29P. Modeling is provided by collaborators Combi and Fougere.



The CO emission line profile is
narrow and Doppler shifted.

=Sunward side emission

Methanol’s line is much wider than
CO and with no measurable Doppler
shift.

=Emission from a heated icy
grain shell for CH,OH
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What do the abundances of
carbon-species tell us about
comets!?

It's complicated!
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Figure from Dello Russo et al. 2016.

GROUP C: NH3 and H,CO rich, Hydrocarbon and CO poor to typical, CH3OH and HCN typical
Subgroup &: Hydrocarbon, CH;OH, and CO poor, HCN, NH3, and H,CO rich

Subgroup 9: Hydrocarbon and CO typical, NH3 and HyCO rich



Do carbon-species abundances “agree”
with comet orbital classifications!?

» Carbon-chain molecules (C, and C,) appear depleted
in Jupiter Family comets (A’Hearn et al.1995).

* CO, CH, C,H,, C,H, may also be depleted in JFCs
(Dello Russo et al. 2016), but need more data.

» CO/COQO, abundance ratios suggest that |FCs and long-
period comets formed in overlapping regions between
CO and CO, snow-lines, and CO, may be formed
from CO on grain surfaces (A’Hearn et al. 2012).



Distant comets (>3 au) are a useful niche

e Water-ice sublimation is not strong beyond 3 au

* We can measure CO and CO, production without
the blast of water-ice sublimation near the Sun.

* Sometimes, we can even study comets too far for
CO, to sublimate (CO likely dominant), such as C/
2017 K2 (Meech et al. 2017, Jewitt et al. 201 7).

» Distant comets provide opportunities to test
models of chemical reactions between CO and CO,
on grains and in comae.



CO, and CO high abundances and low

sublimation temperatures

Table 1
Sublimation Temperatures of Cometary Species

Species Temperature® (K)
N, 22
Cco 25
CH,4 31
H,S 57
C,H, 57
H,CO 64
Cco, 72
HGN 74
NH, 78
CS, 78
SO, 83
CH,CN 91
HCN 95
CH,OH 99
H,0 152
Note.

* Yamamoto 1985; Sekanina 1996.

Womack et al. 2017
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CO, and CO and gas/dust ratios in comets may
show different heliocentric dependence

oo CO: break at 8 au?

ay T b CO2: break at 4 au?

ORI OV ccomormrosoms s _scomsom s amsomoomn: rimman_xsw
| _ 5 Bauer et al. 2015,
w‘ ol s ¥ Reach et al. 2013,
002 1Carbon +20xygen 1 « (B g Ootsubo et al. 2012,
° O. Harrington Pinto et al. 2017.

*Need more data!



CO “specific” production rates may show CO-
depletion for large Centaurs (Wierzchos et al. 2017)

CO specific production rates in Centaurs
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Important next steps for cometary CO and CO,

e More CO obs, especially over various r and beyond 5 au
e Simultaneous CO,, CO obs (McKay talk)

e Revisit analysis of CO+CO,
emission in IR bandpasses

e Spitzer IRAC 2

aamme NEFOWI
N

(O. Harrington Pinto, in prep.)
e Revisit CO->CO, chemistry ]
* ALMA and JWST ] o
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Backup slides



We use spectra to measure gas outflow

* Symmetric outflow: estimate gas outflow velocity from
HWHM of spectral lines

Imax ——

Imax/2

VVVVVVV

e Asymmetric (Sunward Side) ejection: Use Blue Wing of
spectral lines



e CO, can be formed when OH and CO radicals combine.
The temperature to make CO, depends on reaction
rates and the deposition of water.

* CO gas is expected to be found at > 30 K in

protoplanetary disks and can be trapped in comet at up
to 70 K.

e The CO, and CO abundance ratios vary dramatically
between comets of different dynamical families. (Ex: JFCs
are not necessarily CO, abundant.)



We use spectra to constrain molecular
excitation and production

| __hv hv - hv .,
TB — T L {[61"1)( kTer) 1] [eTI)( kag) T ]‘] }7
S c2 2J+ 3 A ‘VL[I - —hu]
T 8mr22J +1° “Av e.r:kam °
N1.Crot AFE
Niot = exp ,
tot 57 + 1 I(Trot)
n(r) = @

/ Ly '2- ‘ *
ATT“Vexp



Comet formation region around the CO and
CO, snow lines (A’Hearn et al. 2012 ).

e Sublimation of H,O, CO, and CO are the main drivers of
activity




In progress: CO/HCN abundance ratios

(Wierzchos & Womack, 2018, submitted)

Table 2: Compiled Q(CO)/Q(HCN) ratios in CO-rich and other comets

Comet Q(CO)/Q(HCN) r* (au) Reference
(/2016 R2 (Pan-STARRS) =3500 2.9 This paper
29P /Schwassmann-Wachmann 1 33000 5.8 (1.20]
/2006 W3 (Christensen) 243 3.2 [21)
/1995 O1 (Hale-Bopp) 125-650 3 3]

52-91 0.9 [2.3.7)
C/2010 G2 (Hill) 0 25 (16)
C/1996 B2 (Hyakutake) 96 06,07 is|
C/1999 T1 (McNaught-Hartley) 6 1.3 (9.11]
C/2001 Q4 (NEAT) 31 1.0 14]
/2009 P1 (Garrad) 36 1.6.2.1 [12.13.15.18]
/2013 R1 (Lovejoy) 34 1.3 (17]
Oort Cloud Comets 28 (19]
Jupiter Family Comets 9 (19]
All comets 25 (19]

References: [1] Cochran & Cochran (1991), (2| Magee-Sauer et al. (1999), (3] Biver
et al. (2002), [4] Disanti et al. (2002), [5] Dello Russo et al. (2002, 2004), [6] Magee-
Sauer et al. (2002). [7] Brooke et al. (2003), [8] DiSanti et al. (2003), [9] Gibb et al.



Bulk C/N ratios vary significantly due to
chemical reaction variations in formation zones
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N2/CO abundance ratio depends on formation
temperatures of the comet

THE ASTROPHYSICAL JOURNAL LETTERS, 819:L33 (S5pp), 2016 March 10
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